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Abstract. This paper empirically enlists Python plagiarism attacks that have been found 
on Introductory Programming course assignments for undergraduate students. 
According to our observation toward 400 plagiarism-suspected cases, there are 35 
plagiarism attacks that have been conducted by students. It starts with comment & 
whitespace modification as the most frequent attack and ends with replacing regular 
instruction with API-based instruction as the least frequent one. In addition to such 
primary finding, we have also found two additional findings. First, when classified 
based on Faidhi & Robinson’s taxonomy, the occurrence trend of such attacks is not 
proportional to increasing plagiarism level due to the nature of Python programming 
language, course syllabus, and student preferences. Second, incorporated plagiarism 
attacks are proportional to student experience, even though such relation is, sometimes, 
mitigated by student understanding and assignment restrictions.  
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Introduction 

Source code plagiarism is an act of generating a source code from another code with a slight 
modification (Parker & Hamblen, 1989). Despite the fact that such activity is a trivial task for 
Computer Science (CS) students (Sraka & Kaucic, 2009), detecting such illegal behavior takes 
a considerable amount of time. The lecturer should check each possible source code pairs 
and decide which pairs should be accused as plagiarism cases. Consequently, several 
plagiarism detection systems are developed to alleviate such work (Djuric & Gasevic, 2012; 
Lim et al., 2011; Rabbani & Karnalim, 2017). Using such system, the lecturer is not required 
to check each possible pair manually. He/she is only required to revalidate plagiarism 
suspected pairs generated by such automatic system. 

Even though there are numerous plagiarism detection systems available, most of them were 
only evaluated in black-box manner, which is not sufficient to draw out the characteristic of 
proposed system comprehensively. To the best of our knowledge, there are only two works 
which evaluated their respective system without such black-box manner (Prechelt et al., 
2002; Karnalim, 2016). Both works evaluated their proposed system by analyzing the impact 
of their system toward empirically-listed plagiarism attacks. They defined which attacks 
favor their system and which attacks do not. Prechelt et al. (2002) evaluated their JPlag with 
plagiarism attacks listed from 647 Java source code pairs whereas Karnalim (2016) evaluated 
his low-level plagiarism detection system with plagiarism attacks listed from 378 Java source 
codes.  

Python is a popular programming language for learning Introductory Programming due to 
its simplicity (Guo, 2013). It handles most technical details implicitly, resulting simple yet 
powerful syntaxes for programmer. Due to such popularity, we intend to propose a Python-
targeted plagiarism detection system for education environment. However, before 
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developing such system, we would argue that it is important to understand the 
characteristic of Python plagiarism attacks beforehand. In this paper, we propose such initial 
study. We plan to empirically enlist Python plagiarism attacks on Introductory 
Programming course and analyze its trend from two aspects: Faidhi & Robinson’s taxonomy 
(Faidhi & Robinson, 1987) and student experience. Such study is expected to provide a brief 
characteristic about Python plagiarism attacks in educational environment, especially in 
Introductory Programming course. 

Literature review 

Source code plagiarism is an emerging issue in Computer Science (CS) education, especially 
in Programming course (Cosma & Joy, 2008). In such course, there are, at least, two causes 
which encourage students to do plagiarism. First of all, most programming assignments are 
written electronically. Such circumstance might encourage students to do plagiarism since 
electronic files can be copied and modified easily in no time, without leaving a particular 
trace. On the other, most programming assignments are graded automatically by a judge 
program without human intervention. Such circumstance might encourage students to do 
plagiarism since plagiarism checker on such judge program is usually less accurate than 
human evaluator. The students could easily trick such system as long as they know how it 
works.  

To handle such emerging issues, there are numerous source code plagiarism detection 
systems have been developed. In general, such systems can be roughly classified into two 
categories which are attribute- and structure-based approach (Al-Khanjari et al., 2010). 
Attribute-based approach detects plagiarism based on key properties from given source 
codes whereas structure-based approach detects plagiarism based on source code ordinal 
structure. However, it is important to note that both approaches are not exclusive to each 
other. In some works, both approaches are merged together (Engels et al., 2007; Ohno & 
Murao, 2011), resulting more comprehensive result. 

Attribute-based approach uses key properties from source code, such as software metrics, to 
detect plagiarism (Djuric & Gasevic, 2012; Al-Khanjari et al., 2010; Bandara & Wijayarathna, 
2011). Two source codes are considered as plagiarized to each other if, and only if, both 
codes share similar key properties. The similarity of given key properties itself could be 
measured using various mechanisms such as information retrieval (Ramirez-de-la-Cruz et 
al., 2015; Cosma & Joy, 2012), classification (Bandara & Wijayarathna, 2011), and clustering 
(Jadalla & Elnagar, 2008). However, regardless of its similarity measurement, the 
effectiveness of attribute-based approach is affected heavily by extracted key properties. 
When such properties do not sufficiently capture the characteristic of given source code, 
such approach will not generate accurate result. 

Structure-based approach uses ordinal structure from source code, such as token sequence, 
to detect plagiarism. Such approach usually works in twofold. Firstly, all source codes are 
translated into their respective intermediate form such as lexical token sequence (Djuric & 
Gasevic, 2012; Kustanto & Liem, 2009; Lim et al., 2011), compiler-based representation 
(Chilowicz et al., 2009), or low-level codes (Juričić, 2011; Juricic et al., 2011; Ji et al., 2008; 
Karnalim, 2016; Rabbani & Karnalim, 2017). Secondly, generated intermediate 
representation would be compared in pairwise manner through string-based similarity 
algorithm such as Rabin-Karp Greedy String Tiling (RKGST) (Wise, 1996), Winnowing 
Algorithm (Schleimer et al., 2003), and Local Alignment (Smith & Waterman, 1981). 
According to several works (Prechelt et al., 2002; Djuric & Gasevic, 2012), this approach is 
more effective than attribute-based approach due to its sensitivity. The similarity of two 
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source codes are not only defined by the number of similar properties (which is tokens in 
this case) but also the order of given properties. 

Despite the fact that there are numerous works about plagiarism detection system, to the 
best of our knowledge, only a small number of them were evaluated based on empirically-
listed plagiarism attacks. Most of them were only evaluated in black-box manner, taking a 
bunch of source codes as a dataset and evaluating the system only based on its general 
accuracy toward given dataset. Thus, it might be difficult to exploit specific characteristics of 
given system. The researchers could not declare which attacks are effective and ineffective 
toward their system. By incorporating empirically-listed plagiarism attacks, the researchers 
could define the strengths and weaknesses of their proposed system in more comprehensive 
manner. Moreover, they could also avoid biased result caused by imbalance distribution of 
given attacks since they could control such distribution explicitly. 

In addition to providing a comprehensive metric for evaluation, empirically-listed 
plagiarism attacks could also aid the researchers to design more effective plagiarism 
detection system. They could adjust the proposed system for prioritizing popular attacks 
rather than the rare ones. Moreover, they could also ignore several rare attacks if detecting 
such attacks take a considerable amount of time. 

To the best of our knowledge, previous research enlisted source code plagiarism attacks 
empirically in an explicit manner (Ahmadzadeh et al., 2011; Prechelt et al., 2002; Karnalim, 
2016). Firstly, Ahmadzadeh et al. (2011) enlisted plagiarism attacks occurred on 20 Java 
source codes and used it to check the tendency of plagiarism attacks among novice students. 
Their work generated 11 attacks which are varied from indentation to object-oriented 
modification. Secondly, Prechelt et al. (2002) enlisted plagiarism attacks occurred on 647 Java 
source code pairs in the evaluation of JPlag. Such mechanism generated 21 attacks which are 
varied from whitespace to data structure modification. Finally, Karnalim (2016) enlisted 
plagiarism attacks occurred on 378 Java source codes in the evaluation of low-level 
plagiarism detection approach. His work generated 50 attacks which are varied from 
verbatim copy to loosely-coupled instruction rearrangement.  

Unfortunately, among these works, there are no contributions which are focused on Python 
programming language, even though such language is quite popular nowadays for learning 
Introductory Programming (Guo, 2013). Thus, this paper proposes an empirical study of 
Python plagiarism attacks found on Introductory Programming course. In addition to such 
main goal, we also aim to find out the trend of such attacks from two perspectives: Faidhi & 
Robinson’s taxonomy (Faidhi & Robinson, 1987) and student experience. The result of this 
study is expected to become either an evaluation baseline or a prior knowledge for 
developing Python-targeted plagiarism detection system.  

Methodology 

Generally, our methodology aims to enlist Python plagiarism attacks and find out the trend 
of such attacks toward Faidhi & Robinson’s taxonomy (Faidhi & Robinson, 1987) and 
student experience. Such methodology consists of four phases that should be executed in 
sequential manner. These phases are raw data collection, plagiarism-suspected pair filtering, 
manual listing of plagiarism attacks, and trend analysis.  

First of all, raw data collection aims to collect all student’s source codes that will be used as 
our dataset. In our case, since we aim to enlist Python plagiarism attacks found on 
Introductory programming, our dataset is collected from an undergraduate class of 
Introductory Programming course which was held in the odd semester of 2016/2017 
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academic year. Such class was conducted in 16 weeks where each week consists of two 
sessions: Theory and Laboratory session.  

The syllabus of both theory and laboratory sessions can be seen on Table 1. According to 
materials listed on given table, this course covers 2 built-in functions, which are print and 
input, and 10 syntaxes, which are variable assignment, if-then-else, while-do, for-traversal, 
function declaration, function invocation, static array assignment, static array access, static matrix 
assignment, and static matrix access. The last four syntaxes, which are about array and matrix, 
are taught by assuming that the size of both array and matrix is static instead of dynamic. 
Array and matrix are represented as the multiplication of [None] variable instead of a 
standard Python list. Such modification was applied to accustom the students with default 
array and matrix representation on Java and C#, the programming languages that they will 
learn on the 4th semester. However, it is important to note that we do not restrict our 
students to only use such functions and syntaxes. They could use other instructions which 
they have learned outside the class if necessary.   

For each laboratory session except the 1st, 7th, and 14th session, laboratory assignment is 
represented as five sub-assignments that should be completed in 150 minutes. Two of them 
are related to technical knowledge (e.g. implementing a syntax learned from theory session 
directly) while the others are related to logical problem solving. For each sub-assignment, 
we took all student’s source codes and treated them as a part of our dataset, resulting 1,428 
Python source codes taken from 55 sub-assignments (11 laboratory assignments with 5 sub-
assignments each).  

 

Table 1. Course syllabus 

Week Course material of theory session Course material of laboratory session 

1 Introduction and Data Type Adaptation to Programming Environment 

2 Input and Output Output  

3 Branching Input 

4 The 1st Quiz Branching 

5 Traversal Traversal 

6 Nested Traversal Nested Traversal 

7 The 2nd Quiz Laboratory Mid-Test 

8 Mid-Test - 

9 Void Function Void Function 

10 Return Function Return Function 

11 Array Array 

12 The 3rd Quiz Function and Array 

13 Matrix Matrix 

14 Searching and Sorting Searching and Sorting 

15 The 4th Quiz Laboratory Final Test 

16 Final Test - 
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Second, plagiarism-suspected pair filtering aims to filter possible source code pairs which 
one of its member is suspected to be plagiarized from another member. In our case, for each 
sub-assignment, 10 source code pairs will be randomly taken as a part of our plagiarism-
suspected pairs. We prefer to select 10 pairs randomly rather than only taking Top-10 pairs 
with the highest similarity degree since some plagiarism attacks might not be found on top 
pairs due to its significant modification. However, to ensure that selected pairs still generate 
high similarity degree, we only took pairs that generate similarity degree higher than 
average threshold, a threshold that is resulted by averaging the highest and lowest similarity 
degree from all source code pairs on that sub-assignment. It is important to note that such 
threshold is determined locally per sub-assignment instead of being determined globally for 
all sub-assignments since the number of possible modifications per sub-assignment might be 
varied. For instance, the hello world assignment should enable less modification than other 
complex assignment such as sorting. By determining average similarity locally per sub-
assignment, the threshold can be adjusted automatically toward the number of possible 
modification, resulting fewer false positives and/or negatives for each sub-assignment.  

In term of determining similarity degree between two source codes, both source codes will 
be converted to token sequences and compared to each other using a string similarity 
algorithm. On the one hand, converting source code to token sequences is conducted using 
ANTLR (Parr, 2014) with Python 3 grammar provided by ANTLR repository 
(https://github.com/antlr/grammars-v4/tree/master/python3). It is important to note 
that, in this phase, source code comments are excluded from generated token sequences so 
that our measurement is guaranteed to only consider semantic-preserving tokens. On the 
other hand, comparing string sequences is conducted based on an adaptation of JPlag 
similarity measurement (Prechelt et al, 2002) which detail can be seen in (1). sim(A,B) refers 
to similarity degree between two compared token sequences namely A and B; coverage(A,B) 
refers to the total size of shared token subsequences that is generated based on Rabin-Karp 
Greedy-String-Tiling (RKGST) algorithm (Wise, 1993) with 2 as its minimum match length; 
and |A| & |B| refer to the length of token sequence A and B respectively. Such 
measurement assures that each modification will affect the similarity result. 

sim (A,B) = 2 * coverage (A,B) / (|A|+|B|)                                          (1) 

We have acknowledged that not all source code pairs which share high similarity degree are 
generated from plagiarism acts. Several pairs might be generated due to coincidence, 
especially when given assignment provides only one logical fashion to solve it. However, 
since filtering true-positive plagiarism pairs on these pairs might be difficult based on the 
fact that no students would want to confess their illegal behavior, we have no option but to 
rely on similarity degree to filter plagiarism pairs. In order to avoid misleading terminology, 
we refer such pairs as plagiarism-suspected pairs instead of plagiarism pairs. In other 
words, we do not guarantee that all pairs used in this work are generated from plagiarism 
acts. Some of them might be generated based on coincidence.  

In short, the second phase, which is plagiarism-suspected pair filtering, generates 550 source 
code pairs from our dataset. It is collected from 55 sub-assignments that cover 11 
assignments where, for each sub-assignment, 10 source code pairs which similarity degree is 
higher than local average similarity degree are taken. 

Third, manual listing of plagiarism attacks aims to enlist all plagiarism attacks found on 
filtered dataset. In our case, such listing is conducted by the first author who has 7 years’ 
experience for detecting source code plagiarism on Introductory Programming course. 
However, to mitigate the number of observed pairs, our work only considers source code 
pairs which both members correctly solve given sub-assignments. Such mechanism is 

https://github.com/antlr/grammars-v4/tree/master/python3
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applied based on the fact that, according to our informal observation in our course, most 
students tended to share their code to others if, and only if, they had completed writing the 
code for solving a sub-assignment. They seldom shared half-completed code to their friends 
since they were required to complete it first to get higher score. As a result, our work 
excludes 150 pairs and only considers 400 pairs for manual observation. 

In order to simplify our work, we will enlist plagiarism attacks based on the list defined by 
Karnalim’s work (Karnalim, 2016). His work is preferred to other works based on following 
reasons: 1) Plagiarism attacks enlisted by his work are more comprehensive than other 
works. It can be seen from the number of generated plagiarism attacks where his work 
outperforms the others; 2) His work is focused only on attacks found on Introductory 
Programming course, which is quite similar with our goal; and 3) To the best of our 
knowledge, his work is the only work which explicitly mapped listed plagiarism attacks 
based on Faidhi & Robinson’s taxonomy (Faidhi & Robinson, 1987). We do believe that the 
relation between such taxonomy and listed plagiarism attacks might be beneficial for further 
evaluation about source code plagiarism detection system.  

Plagiarism attacks defined by Karnalim (2016) are then modified and adapted based on the 
manual observation of given dataset. While observing each source code pair, each 
plagiarism attack will be either mapped to existing attack list defined by Karnalim or 
considered as a new attack type. Such mechanism is conducted based on the fact that the 
nature of programming language targeted by Karnalim’s work (i.e. Java) is quite different 
with ours (i.e. Python).  

Finally, trend analysis aims to find out the trends of collected attacks based on two 
perspectives: Faidhi & Robinson’s taxonomy and student knowledge. On the one hand, to 
find out the trend toward Faidhi & Robinson’s taxonomy, such attacks are mapped to six 
levels of Faidhi & Robinson’s taxonomy and, according to attack occurrences per level, the 
relation between attack occurrences and increasing plagiarism level is analyzed. On the 
other hand, to find out the trend toward student experience, the relation between attack 
variance per week and student experience is analyzed. 

By and large, it can be roughly stated that our methodology will generate three findings 
which are empirically-listed plagiarism attacks, the trend of collected attacks toward Faidhi 
& Robinson’s taxonomy, and the trend of collected attacks toward student experience. The 
first finding will be generated on the 3rd phase, which is the manual listing of plagiarism 
attacks, whereas the other two will be generated on the last phase, which is the trend 
analysis. 

Results and discussion 

Empirically-listed plagiarism attacks 

According to our proposed methodology, 35 distinctive plagiarism attacks are extracted 
from 400 plagiarism-suspected pairs on the third phase, which is manual listing of 
plagiarism attacks. The detail and occurrences of these attacks can be seen on Table 2 where 
each attack is assigned with a unique ID that starts with P. It is important to note that all 
enlisted attacks work in two-way reversible fashion. For example, if an attack is focused on 
incorporating a dummy method, then removing dummy method is also considered as that 
attack. As seen in Table 2, there are five attacks which occur frequently on our dataset. These 
attacks are P01, P03, P17, P27, and P28. 
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Table 2. Empirically-listed plagiarism attacks 

ID Attack type 
Number of 
occurrences 

(pairs) 

P01 Modify comment and whitespace 400 

P02 Modify source code delimiter 45 

P03 Modify identifier name 322 

P04 Assign different default value to a variable 40 

P05 Merge two or more variable assignments 11 

P06 Change the variable scope 28 

P07 Reuse declared variables for other processes 5 

P08 Incorporate dummy variables 27 

P09 Rearrange function declaration 17 

P10 Encapsulate the content of main function as a particular function and call 
it on main function as a replacement of its content 

18 

P11 Encapsulate a particular task as a void function with the use of global 
variables 

14 

P12 Encapsulate a particular task as a void function without the use of global 
variables 

7 

P13 Encapsulate a particular task as a non-void function without the use of 
global variables 

17 

P14 Utilize API-based instruction instead of regular instruction 1 

P15 Break down API-based instruction to several more-specific API-based 
instructions 

10 

P16 Exchange API-based instruction with other API-based instruction that 
yield similar functionality for particular circumstance  

12 

P17 Incorporate useless arguments on API function call or syntax form 75 

P18 Replace constant value with variable or vice versa 9 

P19 Replace constant with operation which yields similar result 6 

P20 Change operand order in arithmetic or boolean operation 18 

P21 Merge several operations without the use of temporary variables 31 

P22 Replace increment/decrement instruction with their respective binary 
operator form 

4 

P23 Replace combined assignment with their respective binary operator form 18 

P24 Replace data type with other data type that yields similar functionality 
for particular circumstance 

4 

P25 Incorporate useless casting 2 

P26 Change loop type 8 

P27 Incorporate dummy instructions without changing the decision logic 66 

P28 Rearrange loosely-coupled instructions on similar scope 59 

P29 Replace a number of repetitive instructions with a loop 9 

P30 Change loop boundary 34 

P31 Reverse loop direction from ascending to descending 3 

P32 Rearrange branching statements based on its condition validation 
sequence 

16 

P33 Replace logical expression with other expression that yields similar 
meaning 

27 

P34 Incorporate logical expression that can be replaced with boolean constant 7 

P35 Change incorporated algorithm with another algorithm which shares 
similar goal 

2 
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First, P01, which is focused on modifying comment and whitespace, generates the highest 
number of occurrences on our dataset. It occurs on all 400 cases where most of them are 
represented as modifying comment. Such finding is natural since modifying comment is the 
easiest attack to be conducted. It does not affect the program flow yet it changes given 
program layout significantly. Indentation modification (e.g. replacing each tabulation with 3 
spaces), on the contrary, only occurs on a small number of cases. We would argue that such 
few number of occurrences is caused by Python’s strict indentation mechanism. Python 
forces the programmers to follow typical indentation style while writing the code. Therefore, 
source code indentation on Python source code cannot be modified freely as in other 
programming languages such as Java. Even though it is still possible to do such thing, it will 
take a considerable effort since all indentation tokens on given code should be replaced. 

Second, P03, which is focused on modifying identifier name, generates the 2nd highest 
number of occurrences on our dataset. It occurs on 322 of 400 cases where most of them are 
represented as variable renaming. Such finding is natural since variable can be found on 
almost all sub-assignments, resulting it as the most prominent identifier type for this attack. 
The modification itself is varied from changing character capitalization (e.g. maxsize to 
Maxsize) to replacing the whole identifier name with other different-yet-similar term (e.g. 
node to vertex).  

Third, P17, which is focused on incorporating useless arguments on API function call or 
syntax form, generates the 3rd highest number of occurrences on our dataset. It occurs on 75 
of 400 cases even though such attack seldom occurs on other programming languages such 
as Java and C++. When discovered further, such unusual phenomenon is caused by the fact 
that Python overrides most of its built-in functions and syntaxes for programmer 
convenience, resulting numerous alternative forms for each function or syntax. Therefore, 
since such alternatives only differ in term of the number of parameters, useless arguments 
could be used easily as a plagiarism attack. In our case, print and input are the most 
frequently targeted built-in functions for this attack whereas for-traversal is the most 
frequently targeted syntax. The students frequently changed how they use these functions 
and syntax since they had been taught various forms of such functions and syntax on theory 
session. For instance, most students tended to discard some parameters on for-traversal since 
they had been taught how for-traversal works when represented with complete and 
incomplete parameters. 

Fourth, P27, which is focused on incorporating dummy instructions, generates the 4th 
highest number of occurrences on our dataset. It occurs on 66 of 400 cases where such 
attacks could be roughly classified into two categories: incorporating either non-mandatory 
return keyword at the end of function declaration or useless print function invocation on the 
program body. The high number of occurrences of both attacks is natural since, in our 
course, both instructions, at some extent, do not affect student grades. We let the students to 
use return keyword if they want to and let them to freely put numerous print function 
invocations as long as the output would be quite similar with our desired output. 

Last, P28, which is focused on rearranging loosely-coupled instructions, generates the 5th 
highest number of occurrences on our dataset. It occurs on 59 of 400 cases where most of 
them are only about re-arranging the position of one-line instruction such as variable 
assignment. Only a few of them re-arrange the order of numerous instructions at once. 

In addition to findings found on Top-5 attacks, we also enlist several minor findings which 
have been discovered during the observation. These findings are: 1) In Python, it is possible 
to implement P02 attack by replacing string literal delimiter from single-quotation to 
double-quotation marks and vice versa, both marks are valid for declaring Python strings; 2) 
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Python enables multiple assignments, which is also a possible implementation of P05 attack; 
3) Python does not have do-while syntax. Thus, do-while behavior on Python will be 
represented with while syntax, which might be varied in terms of implementation. Such 
variation could be used as P29 attack; and 4) The variance of incorporated attacks, at some 
extent, rely on the course syllabus. For example, P35 attack, which is not listed by Karnalim 
(2016), occurs in our dataset since, at that time, the students were required to implement an 
arbitrary sorting process while they had been taught three kinds of sorting algorithm on 
theory session. 

The trend of empirically-listed plagiarism attacks toward Faidhi & Robinson’s 
taxonomy 

According to Faidhi & Robinson (1987), plagiarism attacks can be classified into six levels 
where, for each increasing level, the difficulty for doing such attack increases. The detail of 
such levels can be seen on Table 3. These levels start with level 1, which is about comment, 
whitespace, and delimiter modification, as the easiest level, to level 6, which is about logic 
change, as the hardest one. Among these levels, level 6 is the only level which is not affected 
by Python syntactical features. Such finding is natural since level 6 is about logic change, an 
attack category which is not directly related to programming language syntax.  

Since higher attack level, at some extent, represents higher difficulty on such taxonomy 
(Faidhi & Robinson, 1987), the attack difficulty should be inversely proportional to the 
number of students who can do such attack. In other words, plagiarism attack frequency at a 
particular level should be fewer than plagiarism attack frequency at its lower level. In this 
section, we want to revalidate whether such trend is also applied to Python plagiarism 
attacks from Introductory Programming course. However, before analyzing such trend, 
plagiarism attacks listed on Table 2 will be mapped to Faidhi & Robinson’s taxonomy. The 
result of such mapping can be seen on Table 4. Among these levels, level 5 is assigned with 
the most number of attacks, which is 15 of 35 attacks, while level 2 is assigned with the 
fewest number of attack, which is 1 of 35 attacks. 

 

Table 3. Faidhi & Robinson’s taxonomy of plagiarism attacks 

Level Attack Category 

1 Comment, whitespace, and delimiter modification 

2 Identifier renaming + level 1 attacks 

3 Component declaration relocation + level 2 attacks 

4 Inlining and outlining function + level 3 attacks 

5 Program statement replacement + level 4 attacks 

6 Logic change + level 5 attacks 

 

Table 4. Mapped plagiarism attacks according to Faidhi & Robinson’s taxonomy 

Level Included Plagiarism Attacks 

1 P01 and P02 

2 P03 

3 P04 – P09 

4 P10 – P13 

5 P14 – P28 

6 P29 – P35 

 



26  O. Karnalim  

 

Figure 1. Total number of plagiarism attack occurrences per level 

After all attacks have been mapped, total number of occurrences on each level is then 
summed and analyzed. However, since the number of occurrences in Table 2 do not provide 
sufficient information about how many attacks overlap to each other, we assume that all 
attacks on a particular level always overlap to each other. Therefore, for each level, its total 
number of occurrences are generated by selecting the highest number of occurrences from 
all attacks on given level. Total number of occurrences for each level can be seen on Figure 1. 
Horizontal axis represents Faidhi & Robinson’s levels whereas vertical axis represents total 
number of occurrences. As seen in Figure 1, the number of plagiarism attack occurrences at a 
particular level is not always fewer than the number of plagiarism attack occurrences at its 
lower level. For instance, the number of level 5 attack occurrences is not fewer than the 
number of level 4 attack occurrences. When discovered further, there are several aspects 
which cause such phenomena.  

Firstly, in Python, variable declaration cannot be written explicitly and it is always 
conducted implicitly when a variable is assigned with a value. Thus, it might mitigate the 
number of level 3 attack occurrences, as it is known that variable declaration relocation is a 
part of level 3 attacks. Secondly, since function material was introduced at the 9th session, 
level 4 attacks, which are about inlining and outlining method, might never occur at the 
beginning of the course, reducing the number of such attack occurrences. Thirdly, according 
to our informal in-class observation, most students tended to avoid using function since 
such mechanism made their code more complex. Consequently, such aspect might also 
reduce the number of level 4 attack occurrences. Finally, since Python overrides numerous 
built-in functions and syntaxes for programmer convenience, level 5 attacks, which are 
focused on program statement replacement, can be conducted easily, increasing the number 
of such attack occurrences. 

To sum up, since the number of plagiarism attack occurrences at a particular level is not 
always fewer than the number of plagiarism attack occurrences at its lower level, it can be 
roughly stated that, in our case study, attack difficulty is not always proportional to 
increasing plagiarism level. We would argue that such finding is natural due to the nature of 
Python programming language, course syllabus, and student preferences. 
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Figure 2. Number of distinct attacks per week 

The trend of empirically-listed plagiarism attacks toward student experience 

This section aims to revalidate whether the number of attack variance is proportional to the 
student experience or not. Based on the fact that student experience is enlarged as the 
number of lecture week increases, such relation can be measured based on the relation 
between the number of distinct attacks per week and the number of passed laboratory 
weeks. If the number of distinct attacks per week is increased as the number of passed 
laboratory weeks increases, then it can be stated that the number of attack variance is 
proportional to the student experience. The number of distinct attacks per laboratory week 
resulted from our dataset can be seen in Figure 2. Horizontal axis represents laboratory 
weeks whereas vertical axis represents the number of distinct attacks. 

As seen in Figure 3, even though, in general, the number of distinct attacks is increased as 
the number of passed laboratory weeks increases, it is still reduced at certain points. To be 
specific, it is reduced at the 5th, 10th, 11th, and 13th week, which are about traversal, return 
function, array, and matrix material respectively. When discovered further through informal 
survey, such phenomenon occurs since, at that time, most students felt such materials were 
difficult to learn. They could not understand the materials comprehensively, resulting a 
discouragement to put various attacks on their code. Among given laboratory weeks, the 9th 
week, which is about void function, generates the most number of attack variance. Such 
finding is natural since, in such week, we encouraged the students to freely design the 
functions on their source codes. Thus, they would easily incorporate numerous obvious 
attacks without being worried to be accused as plagiarists.  

By and large, when viewed in general, it is true that the number of attack variance is 
proportional to the student experience. However, since such trend is affected by student 
understanding and assignment restrictions, it is possible to see such trend fluctuates at 
certain points. 

Threats to Validity 

In general, there are two threats to validity which should be considered. On the one hand, it 
is important to note that our dataset does not include only true positive plagiarism cases due 
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to limited human resource and time. However, we try to mitigate this threat by filtering 
plagiarism-suspected pairs through human-like approach for detecting plagiarism. We only 
took source code pairs which share high similarity degree in our dataset. On the other hand, 
due to limited observed cases, our result cannot be generalized to represent all possible 
Python plagiarism attacks for Introductory Programming course. However, we try to 
mitigate this threat by observing source codes collected for the whole semester and taking 
random source code pairs to avoid biased result. Yet, there is still a possibility that several 
attacks were not observed.  

Conclusions 

In this paper, we have enlisted Python plagiarism attacks on Introductory Programming 
course. Based on our 400 plagiarism-suspected pairs, there are 35 distinct plagiarism attacks, 
where Top-5 attacks are modifying comment and whitespace, modifying identifier name, 
incorporating useless arguments on API function call or syntax form, incorporating dummy 
instructions, and rearranging loosely-coupled instructions. Beside such finding, two 
additional findings can also be deducted which are: 1) Plagiarism attack difficulty is not 
always proportional to increasing plagiarism level due to the nature of Python 
programming language, course syllabus, and student preferences and 2) The number of 
distinct plagiarism attacks per week is proportional to the student experience even though it 
is still affected by student understanding and assignment restrictions. 

For future work, these findings will be used as a baseline for developing a Python-targeted 
plagiarism detection system. We intend to propose a plagiarism detection system that is 
sensitive to popular Python plagiarism attacks in Introductory Programming environment. 
Moreover, we also intend to conduct similar empirical study on Data Structure course, 
which incorporates standard object-oriented techniques. Such finding then will be merged 
with this work to provide more-comprehensive study about Python plagiarism attacks in CS 
education. 
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